Tight chiral polyhedra

Gabe Cunningham

University of Massachusetts Boston

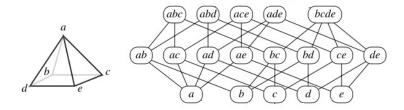
November 14, 2015

Definition of an abstract polyhedron

An (abstract) polyhedron \mathcal{P} is a ranked poset of vertices (rank 0), edges (rank 1), and faces (rank 2) such that:

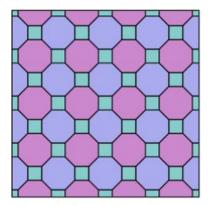
- Every edge is incident to exactly two vertices and two faces.
- Whenever a vertex is incident to a face, there are exactly two edges that are incident to both.
- ullet ${\cal P}$ is locally and globally connected.

Examples



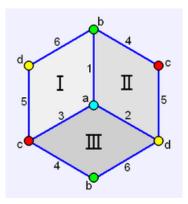
Combinatorial view of a pyramid

Examples



Tiling of the plane by octagons and squares

Examples



The hemicube

Schläfli symbol of a polyhedron

A polyhedron has Schläfli symbol (or type) $\{p, q\}$ if every face is a p-gon and every vertex is q-valent.

Question 1: What is the smallest polyhedron of type $\{p, q\}$?

Size of a polyhedron

A flag of a polyhedron consists of a vertex, edge, and face, all mutually incident.

Proposition

A polyhedron of type $\{p,q\}$ has at least 2pq flags.

When a polyhedron of type $\{p, q\}$ has exactly 2pq flags, it is called tight.

Theorem (C., 2013)

There is a tight polyhedron of type $\{p,q\}$ if and only if p or q is even.

Theorem (C., 2013)

There is a tight polyhedron of type $\{p,q\}$ if and only if p or q is even.

If p and q are both odd, what is the smallest polyhedron of type $\{p,q\}$?

Theorem (C., 2013)

There is a tight polyhedron of type $\{p,q\}$ if and only if p or q is even.

If p and q are both odd, what is the smallest polyhedron of type $\{p, q\}$? Open question!

What is the smallest polyhedron of type $\{p, q\}$ with a prescribed degree of symmetry?

Automorphisms of polyhedra

An automorphism of \mathcal{P} is an order-preserving bijection from \mathcal{P} to itself. The automorphism group of \mathcal{P} is denoted $\Gamma(\mathcal{P})$.

A polyhedron is regular if $\Gamma(\mathcal{P})$ acts transitively on the flags.

Examples: Platonic solids, tiling of the plane by hexagons, hemicube

Tight regular polyhedra

Question 2: For what values of p and q is there a tight regular polyhedron of type $\{p, q\}$?

Tight orientably regular polyhedra

Theorem (Conder and C., 2014)

There is a tight orientably regular polyhedron of type $\{p, q\}$ if and only if one of the following is true:

- p and q are both even
- p is odd and q is an even divisor of 2p
- q is odd and p is an even divisor of 2q

Tight non-orientably regular polyhedra

Theorem (C. and Pellicer, 2015)

There is a tight non-orientably regular polyhedron of type $\{p,q\}$ if and only if one of the following is true:

- p = 4 and q = 3k
- p = 4r and q = 6k, with r > 1 odd and k odd
- q = 4 and p = 3k
- q = 4r and p = 6k, with r > 1 odd and k odd.

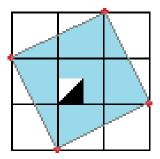
Chiral polyhedra

A polyhedron \mathcal{P} is chiral if $\Gamma(\mathcal{P})$ has 2 orbits on the flags, and flags that differ in only one element lie in different orbits.

Chiral polyhedra

A polyhedron \mathcal{P} is chiral if $\Gamma(\mathcal{P})$ has 2 orbits on the flags, and flags that differ in only one element lie in different orbits.

Example:



Automorphism group of chiral polyhedra

Let \mathcal{P} be a chiral polyhedron and pick a base flag Φ . There is an automorphism σ_1 that rotates the face of Φ one step, and an automorphism σ_2 that rotates one step around the vertex of Φ .

Furthermore:

- $\Gamma(\mathcal{P}) = \langle \sigma_1, \sigma_2 \rangle$
- ullet It is possible to recover ${\mathcal P}$ from its automorphism group.

Classifying tight chiral polyhedra

Question 3: For what values of p and q is there a tight chiral polyhedron of type $\{p, q\}$?

Searching for tight chiral polyhedra

From Marston Conder's list of chiral polyhedra with up to 2000 flags, we find tight chiral polyhedra of the following types:

$$\begin{array}{ll} \{6,9n\} \text{ for } 1 \leq n \leq 18 & \{8,32n\} \text{ for } 1 \leq n \leq 3 \\ \{9,18\} & \{10,25n\} \text{ for } 1 \leq n \leq 4 \\ \{12,18n\} \text{ for } 1 \leq n \leq 4 & \{14,49\} \\ \{16,32\} & \{18,6n\} \text{ for } 3 \leq n \leq 4 \\ \{18,9n\} \text{ for } 2 \leq n \leq 6 & \{20,50\} \\ \{24,32\} & \{24,36\}. \end{array}$$

Patterns

Every entry on our table is of one of the following forms:

$$\{2mr, m^2s\}$$
 for odd prime m
 $\{m^2s, 2mr\}$ for odd prime m .
 $\{8r, 32s\}$

Some families of tight chiral polyhedra

Theorem

For each $\beta \geq 2$ and odd prime m, there is a tight chiral polyhedron of type $\{2m, m^{\beta}\}$.

Theorem,

For each $\beta \geq 5$, there is a tight chiral polyhedron of type $\{8, 2^{\beta}\}$.

Theorem

For each $\beta \geq 5$, there is a tight chiral polyhedron of type $\{2^{\beta-1},2^{\beta}\}$.

Polyhedron covers

If $\mathcal P$ and $\mathcal Q$ are chiral polyhedra, then $\mathcal P$ covers $\mathcal Q$ if there is a well-defined surjective group homomorphism from $\Gamma(\mathcal P)$ to $\Gamma(\mathcal Q)$ sending generators to generators.

(Chiral polyhedra can also cover regular polyhedra via a similar definition.)

Coverings

Proposition

If $\mathcal P$ is a tight chiral polyhedron of type $\{p,q\}$ with $q \geq p$, then it covers a tight chiral or regular polyhedron of type $\{p,q'\}$ for some q' < p.

We say that the tight chiral polyhedron $\mathcal P$ is atomic if it does not cover any other tight chiral polyhedra.

If H is a subgroup of G, the core of H is the largest subgroup of H that is normal in G. If the core of H is trivial, then H is core-free.

Proposition

Suppose \mathcal{P} is an atomic chiral polyhedron of type $\{p,q\}$ with q>p. Then $\langle \sigma_1 \rangle$ is core-free, and $\langle \sigma_2 \rangle$ has a nontrivial core $\langle \sigma_2^{q'} \rangle$ for some q' dividing q.

Theorem

Suppose \mathcal{P} is an atomic chiral polyhedron of type $\{p,q\}$ with q>p, and let $\langle \sigma_2^{q'} \rangle$ be the core of $\langle \sigma_2 \rangle$. Then q/q' is a prime power.

Proof sketch: Suppose q/q'=bc with b and c coprime. Then $\mathcal P$ covers tight polyhedra of types $\{p,bq'\}$ and $\{p,cq'\}$. Those must both be regular, because $\mathcal P$ is atomic. Then show that this implies that $\mathcal P$ is itself regular.

Lemma

Let \mathcal{P} be an atomic chiral polyhedron of type $\{p,q\}$ with q>p, and let $\langle \sigma_2^{q'} \rangle$ be the core of $\langle \sigma_2 \rangle$. Then $\langle \sigma_1^{2q/q'} \rangle$ is normal in $\Gamma(\mathcal{P})$.

Lemma

Let \mathcal{P} be an atomic chiral polyhedron of type $\{p,q\}$ with q>p, and let $\langle \sigma_2^{q'} \rangle$ be the core of $\langle \sigma_2 \rangle$. Then $\langle \sigma_1^{2q/q'} \rangle$ is normal in $\Gamma(\mathcal{P})$.

But $\langle \sigma_1 \rangle$ is core-free, so p divides 2q/q'.

Since q/q' is a prime power, p is either a power of 2 or twice an odd prime power.

 ${\mathcal P}$ covers a tight regular polyhedron of type $\{p,q'\}$ with $\langle \sigma_2 \rangle$ core-free.

Theorem (C. and Pellicer, 2014)

Suppose \mathcal{P} is a tight orientably regular polyhedron of type $\{p, q'\}$ with $\langle \sigma_2 \rangle$ core-free. Then q' divides p. In particular, for each odd prime dividing p, either q' contains none of the factors of that prime, or it contains all of them.

Case 1: $q/q' = 2^{\beta}$.

Then $p = 2^{\alpha}$, and q' divides p. So q is also a power of 2.

Case 2: $q/q' = m^{\beta}$ for odd prime m.

Then $p=2m^{\alpha}$. q' is either 2 or m^{α} . It can be shown that $q'\neq 2$. So q is a power of m.

Classification of atomic chiral polyhedra

Theorem,

Let \mathcal{P} be an atomic chiral polyhedron of type $\{p,q\}$ with q>p. Then the Schläfli symbol of \mathcal{P} is one of the following:

- **1** $\{2m, m^{\beta}\}$, where m is an odd prime and $\beta \geq 2$
- **2** $\{8, 2^{\beta}\}$, where $\beta \geq 5$
- **3** $\{2^{\beta-1}, 2^{\beta}\}$, where $\beta \geq 5$.

Tight chiral polyhedra with q odd

Theorem

Let \mathcal{P} be a tight chiral polyhedron of type $\{p,q\}$ with q odd. Then p is an even divisor of 2q.

Classification of tight chiral polyhedra

Theorem,

There is a tight chiral polyhedron of type $\{p,q\}$ if and only if it has one of the following types or its duals:

- $\{2mr, m^2s\}$, with s odd and r|ms.
- $\{2mr, m^2s\}$, with s even.
- $\{8r, 32s\}$.

Future work

- Are the tight chiral polyhedra I have found the only ones?
- What are the Schläfli symbols of tight chiral 4-polytopes?

Future work

- Are the tight chiral polyhedra I have found the only ones?
- What are the Schläfli symbols of tight chiral 4-polytopes?

Thank you!